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Background: US Electric Power Plants

Data: U.S. EPA’s eGrid database
Visualization: www.npr.org/templates/story/story.php?storyId=110997398



Background: US Electric Transmission Grid

Data: Various sources
Visualization: www.npr.org/templates/story/story.php?storyId=110997398



Observations

Power Grid has large number of interacting components
Several failure mechanisms: hidden failures, operator error,
shorting of lines due to lack of maintenance, relays
misbehaving due to over-maintenance, erratic consumer
demands, lightning, earthquakes etc
Non local effects of failures



Observations

Large blackouts are typically triggered by very few (one or
two) primary events, which are followed by a cascading
sequence of secondary failures
Larger disruptions are less probable: probability is a decreasing
power function of event size
Larger blackouts though rarer, are much more costlier
So it pays to study cascading failures



Cascading Failure Models in Literature

Grid Specific
Each failing node increases the load on every other node
uniformly (Dobson, 2004)
Branching process: each failing node takes with it a random
number of nodes (Dobson, 2004)

General Networks
A node fails if a fraction of its neighbors fail (Watts, 2002)
Drop in efficiency of a network because of an imbalance in
flow distribution(Crucitti et al., 2004; Latora et al., 2001)



A Simple Initial System Model
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High level abstraction of the grid

Grid is modeled as an
undirected graph
Nodes are generators and
weights are loads served
All nodes have unit capacity
Generator is online if load
demand is less than capacity



A Simple Initial System Model

Edges are not power lines: they represent a load sharing
arrangement
Equal sharing of offline generator loads: all graph neighbors
take up the offline generator’s load
Underlying electrical network is assumed to be capable of
supporting the imposed redundancy



A Simple Failure Model

In steady state, the load demand at each node is below rated
capacity
Initial load is modeled as independent random variables at
each node
Load disturbances increase load at nodes
Disturbance is modeled as independent random variables at
each node
The load disturbances cause a few generators to go offline
The offline generator loads get picked up by graph neighbors
leading to a propagation of the disturbance and potentially
more failures



A Simple Failure Model
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An example of a blackout resulting from a cascade
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Fully Connected Redundancy Graph
There is load sharing arrangement between every pair of nodes
Intuitively - good for robustness
Good for customers - outage probability is least:



Fully Connected Redundancy Graph
Not good under other metrics
Sparse network - cascades subside easily
Somewhat sparser redundancy graph is good for utilities -
Expected % of population in outage is least:



Fully Connected Redundancy Graph

Fully connected redundancy graph: either there is no outage
or there is a total blackout:



Analysis Result

Fully connected redundancy graph
Initial loads at each node is a constant
Disturbance is exponential with mean dm

Result
There is a dcritical such that, when dm < dcritical , cascading failures
subside with probability 1, and when dm ≥ dcritical , all nodes fail
with probability 1



Analysis Technique

Initial distributions

Resulting convolution



Analysis Technique

Initial distributions

Resulting convolution



Notation

an = least possible load at the online nodes in stage n
pn = probability that a node which is alive at stage n goes
offline at stage (n + 1)
Dn = prob. distribution of the re-distributed load at stage n
Ln = prob. distribution of the total load at stage n
N = total number of nodes
Noff = number of nodes which go offline due to the added
disturbance
Load after re-distribution:

Lji (1) = Lji (0) +

Noff∑
i=0

Lki (0)

(N − Noff )



Analysis

Noff ∼ Binomial(N, p0)

L0 ∼ δ(a0) and D0 ∼ Exponential(dm)
Dn = prob. distribution of the re-distributed load at stage n
Lji (0) : fLji (0)(x) = fL0+D0(x |L0 +D0 < 1)
Lki (0) : fLki (0)(x) = fL0+D0(x |L0 +D0 ≥ 1)



Analysis

Re-distributed load tends to a constant for large networks

lim
N→∞

SNoff = lim
N→∞

Noff /N
1− Noff /N

·

Noff∑
i=0

Lki (0)

Noff
p
=

p0
1− p0

· µ0

µ0 = E (Lki (0)) =
∫ ∞
x=1

x · fL0+D0(x |L0 +D0 ≥ 1) dx

p0 = Pr(L0 +D0 ≥ 1) =
∫ ∞
x=1

fL0+D0(x) dx

Consequence: Loads at all online nodes at each stage are
independent and identically distributed (iid)



Analysis Proceeds in Stages

Stage 1:

Stage 2:

Load Re-distributed load



Analysis Proceeds in Stages

Stage 1:

Stage 2:

Load Re-distributed load



Recursive Equations Governing System Evolution

1 Initialize: p0 = e−
1−a0
dm , D1 = p0

1−p0
(1+ dm), a1 = a0,

p1 = e−
1−a1
dm

1−e−
1−a1
dm

(e
D1
dm − 1)

2 For n = (2, . . . ,Niterations), do:
If ((an−1 +Dn−1) > 1) and (an−1 < 1), STOP
else:

(a) an = an−1 +Dn−1
(b) µn−1 = 1+ dm − Dn−1

e
Dn−1
dm −1

(c) Dn = pn−1
1−pn−1

· µn−1

(d) pn = e−
1−an
dm

1−e−
1−an
dm

(e
Dn
dm − 1)



Results: Evolution of pn

From the recursive system:



Results: Evolution of an

From the recursive system:



Results: Behavior of a Finite Fully Connected System

dcritical for some large enough finite size networks:



Results: dcritical as a function of initial load a0

dcritical and required excess generation capacity:



Improvements to the System/Failure Model

Generators rarely trip, they are protected using relays
etc - can be modeled using a probability of failure for the
protective devices associated with each generator
The redundancy graph is never fully connected - this
assumption is used only for simplifying analysis. Simulations
can be performed even without this assumption
Electricity flow does not behave like this - when the exact
topology of the electrical network is known, simulations can
take into account the power flow equations and redistribute
load accordingly
Load sharing arrangements could change dynamically
with market prices - a market based algorithm can be used
to account for this during simulations



Transmission Grid Topology (FEMA, 1993)
Used ESRI shape-files available from NREL (Originally from
FEMA, 1993)
Used generator data available from EIA, 2008
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Limitations on Openly Available Data

Grid topology is somewhat old, but probably not much has
changed
Electrical parameters are not available, but exact length and
line voltage are known
Unit length impedances and transformer parameters may be
estimated from similar grids elsewhere
Generator locations are sometimes available only upto the
county level - then we use the county centroid



Grid + Generating Plants
After fixing the generator locations to closest grid point
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Grid + Generating Plants
Topology after removing bends (electrically unimportant)
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Detail View

Abiquiu



Power Law in Grid Topology

Transmission grid degree distribution
Shows an approximate power law behavior:

100 101

Degree

10-4

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty

Histogram of Transmission Grid Degree Distribution



Conclusions

Studying cascading failures is important for understanding
large scale blackouts
Developed a simple system and failure model and rigorously
analyzed it
Several improvements are possible to the simple model -
however these will make analysis difficult and necessitate
simulations
Further realism is possible only by considering the actual
transmission network topology
Gathered openly available US transmission grid data
For future: simulate more realistic/complicated algorithms
for load sharing and failure using the grid data
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